Dougherty Valley HS • AP Chemistry Precipitation Reactions BLUFFER'S GUIDE

1. Solubility Rules

Review/memorize these rules. They can be split into four groups:

ALWAYS SOLUBLE:

alkali metal ions (Na⁺, K⁺, Li⁺, Rb⁺, Cs⁺), NH₄⁺, NO₃⁻, C₂H₃O₂⁻, ClO₃⁻, ClO₄⁻

USUALLY SOLUBLE:

chlorides, bromides, iodides (CI-, Br-, I-) except "AP/H" (Ag⁺, Pb²⁺, Hg₂²⁺)

sulfates (SO₄²⁻) except "CBS/PBS" (Ca²⁺, Ba²⁺, Sr²⁺, Pb²⁺)

fluorides (F-) except "CBS/PM" (Ca²⁺, Ba²⁺, Sr²⁺, Pb²⁺, Mg²⁺)

USUALLY INSOLUBLE:

oxides/hydroxides (O²⁻, OH⁻) except "CBS" ((Ca²⁺, Ba²⁺, Sr²⁺)

NEVER SOLUBLE:

 $CO_3^{2^-}$, $PO_4^{3^-}$, S^{2^-} , $SO_3^{2^-}$, $CrO_4^{2^-}$, $C_2O_4^{2^-}$ except alkali metals & NH_4^+

2. Solubility Product (K_{sp})

This type of equilibrium involves solids of low solubility. A saturated solution is a solution at equilibrium. The constant has no denominator.

Example: $Co(OH)_2(s) \rightleftharpoons Co^{2+} + 2OH^{-}$ $K_{sp} = [Co^{2+}][OH-]^2 = 2.5 \times 10^{-16}$ What is the pH of a saturated solution?

Let x = the amount (moles) of solid that will just saturate 1 L of solution.

$Co(OH)_2(s) \rightleftharpoons Co^{2+} + 2OH$			
	Х	0	0
	-X	+X	+2x
	0	Х	2x

(x) $(2x)^2 = 4x^3 = 2.5 \times 10^{-16}$

 $x = 3.97 \times 10^{-6}$ [OH-] = 2x = 7.94 x 10⁻⁶ pOH = 5.1 pH = 14- pOH = **8.9**

3. Solubility vs. K_{sp}

"Molar solubility" is the concentration of the saturated solution in moles/Liter. (Solubility is sometimes reported in g/100 mL of water.)

As in the example, for a 1:2 compound, $K_{sp} = 4x^3$ (where x = solubility)

1:1	$K_{sp} = x^2$
1:2	$K_{sp} = 4x^3$
1:3	$K_{sp} = 27x^4$
2:3	$K_{sp} = 108x^5$

4. Will a Precipitate Form?

Ion Product $(Q_{sp}) =$ "reaction quotient".

 $Q_{sp} < K_{sp}$ more solid will dissolve

 $Q_{sp} = K_{sp}$ solution is saturated

 $Q_{sp} > K_{sp}$ ppt will form until $Q_{sp} = K_{sp}$

Note: Be sure to calculate concentration of DILUTED ions.

Example: 50. mL of 2.0 x 10^{-4} <u>M</u> Co(NO₃)₂ is mixed with 200 mL of 1.0 x 10^{-3} <u>M</u> NaOH. Will a precipitate form?

[Note:K_{sp} given in other example problem.]

 $[Co^{2+}] = 2.0 \times 10^{-4} \underline{M} \times \frac{50}{250} = 4.0 \times 10^{-5} \underline{M}$ $[OH-] = 1.0 \times 10^{-3} \underline{M} \times \frac{200}{250} = 8.0 \times 10^{-4} \underline{M}$ $Q_{sp} = (4 \times 10^{-5}) (8 \times 10^{-4})^2 = 2.56 \times 10^{-11}$ $Q_{sp} > K_{sp}; \text{ a precipitate will form!}$

5. Solubility can be influenced by pH.

If the anion came from a weak acid, the salt will be more soluble in a solution of strong acid.

Example: CaCO₃(s) \rightleftharpoons Ca²⁺ + CO₃²⁻

In a strong acid, H^+ combines with $CO_3^{2^-}$ to re-form the weak acid, H_2CO_3 (which may decompose into $CO_2 \& H_2O$). More $CaCO_3(s)$ will dissolve to reach equilibrium.