N9 – HALF LIFE

Half-Life

Half Life is the time required for half of a radioisotope's nuclei to decay into its products.

# of ½ lives	% Remaining
0	100%
1	50%
2	25%
3	12.5%
4	6.25%
5	3.125%
6	1.5625%

Graphing Half-Life

Half of the radioactive atoms decay each half-life. Decay of Radon-220

Using a Table

Suppose you have 10.0 grams of strontium – 90, which has a half life of 29 years. How much will be remaining after x number of years?

# of ½ lives	Time (Years)	Amount Remaining (g)
0	0	10
1	29	5
2	58	2.5
3	87	1.25
4	116	0.625

Half-Life Equation

Solving for % remaining

$$A_{E} = A_{S} \times (0.5)^{n}$$

Then multiply your answer by 100 to put it in % format!

If gallium – 68 has a half-life of 68.3 minutes, how much of a 160.0 mg sample is left after 1 half life?
<u>80 mg</u>. After 2 half lives? <u>40 mg</u>. After 3 half lives? <u>20 mg</u>

 $A_{E} = A_{s} \times (0.5)^{n}$ 80 mg = 160.0 mg x (0.5)¹ 40 mg = 160.0 mg x (0.5)²

Cobalt – 60, with a half-life of 5 years, is used in cancer radiation treatments. If a hospital purchases a supply of 30.0 g, how much would be left after 15 years? <u>3.75 g</u>

 $A_E = A_s \times (0.5)^n$ $A_E = 30.0g \times (0.5)^{(15/5)} = 3.75 g$

Iron-59 is used in medicine to diagnose blood circulation disorders. The half-life of iron-59 is 44.5 days. How much of a 2.000 mg sample will remain after 133.5 days?

> $A_E = A_s \times (0.5)^{t/h}$ $A_E = 2.000 \text{ mg} \times (0.5)^{(133.5/44.5)}$

 $0.2500 \text{ mg} = 2.000 \text{ mg} \times 0.125$

Solve for Time/Half-life

$$A_{E} = A_{s} \times (0.5)^{t/h}$$
 Isolate (0

$$A_{E} = (0.5)^{t/h}$$

 $Log \left(\begin{array}{c} A_{\mathbb{E}} \\ A_{\mathbb{S}} \end{array} \right) = \begin{array}{c} t \\ h \end{array} \\ Log (0.5) \\ h \end{array}$

what you want to solve for!

The half-life of polonium-218 is 3.0 min. If you start with 20.0 g, how long before only 1.25 g remains?

Log (1.25) = t Log (0.5)20.0 3 t = 12min

A sample initially contains 150.0 mg of radon-222. After 11.4 days, it contains 18.75 mg of radon-222. Calculate the half-life. $Log A_{E} = t Log (0.5)$

h = 3.8 days

 $Log\left(\frac{18.75}{150.0}\right) = \frac{11.4 \ Log(0.5)}{h}$